Resolution of Brinkman Equations witha | M)
New Boundary Condition by Using ks
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Abstract This paper considers numerical methods for solving Brinkman equations
with a new boundary condition summing Dirichlet and Neumann conditions. We
develop here a robust stabilized mixed finite element method (MFEM), and two
types of a posteriori error indicator are introduced to give global error estimates;
there are equivalent to the true error. We present numerical simulations.
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1 Introduction

This work deals with the development of stable numerical methods for the Brinkman
equations; these equations are very important in a different domain, for example:
in hydrogeology, porous media, and petroleum engineering. By these equations, we
can model the flow in complex situations, for example, coupling flow in porous
media and surface flow of fluids and we use these equations if we have different
domains with variable coefficients. To describe the flow of a viscous fluid, see [1]
and in soil mechanics see [2, 3]. Mathematically, this equation is a combination of
two partial differential equations; we use a new boundary condition (generalizes the
Dirichlet and the Neumann conditions). This boundary condition is used for Stokes
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problem in [4, 5]. The weak formulation of this equation is a problem of saddle
point type which is our case in this study to show the existence, the uniqueness of
the solution of this problem see [6, 7]. During the last decades, a posteriori error
analysis in problems related to fluid dynamics is a very important subject that has
received a lot of attention. For the conforming case, there are different ways to define
error estimators by using the residual equation. In particular, for the Stokes problem,
Ainsworth and Oden [8], Bank and Welfert [8], and Verfurth [9] introduced several
error estimators and show that they are equivalent to the energy norm of the errors.

The plan of the paper is as follows. In Sect. 2, we present the model problem used
in this paper. The weak formulation of our problem is presented, and we show the
existence and uniqueness of the solution in Sect. 3. The discretization by classical
mixed finite elements is described in Sect. 4. In Sect. 5, we perform the same analysis
for this introduced two types of a posteriori error bounds of the computed solution.
We present a numerical test in Sect. 6.

2 Governing Equations

Let £2 be an open bounded polygonal or polyhedral reservoir in R? and I' = 952
its boundary. The simplest form of Brinkman’s equation is to search the unknowns
velocity functions and pressure of the fluid satisfying
— VU + puK a4+ Vp =7 in )
V-7 =0 in 2.

The function 7) is a momentum source term, p denotes the fluid viscosity, * the
effective viscosity of the fluid, and K is the permeability tensor of the porous media,
which may contain multiscale features of the media.

We assume that these functions w, u* € L*(£2), and the tensor K are symmetric
definite positive, which is uniformly elliptic; i.e., there exist two positive constants
Ymin» Ymax such that

Yanin 11> < 0" KN < Yinax 1] )

forallp € L?(£2) and x € £2.
The problem consists of finding a velocity @ and a pressure p fields with the
C,.,.» boundary condition defined by

AU+ WV —pDHTH =7 inl = a8. A3)
We will consider the fluid viscosity and the effective viscosity of the fluid are bounded

functions depend on the spaces. In the boundary condition (3), the functions _t), a
and p* are bounded polynomials such that
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W _gvrer (4)
W (x)

o <

where the constants oy € R and B; € R™.

Remark 1 Let the functions a and p* (two nonzeros defined on 92 are strictly
positive constants), if a << p* then C, ,+ is the Neumann boundary condition, else
if u* << a then C, ~ is the Dirichlet boundary condition, for that the boundary
condition C, ,+ generalized Dirichlet-Neumann conditions.

3 Weak Formulation and Existence and Uniqueness
of the Solution

Before starting to define the weak formulation of our problem, we define different
spaces used in this study see [ 10]. For more details on the notation or spaces used in
this part, see [4, 5].

3.1 The Weak Formulation

The variational formulation of (1)~(3) reads, find @ € H'(£2) and pel? 0(£2) such
that:

UV A+ [ouKT U = [, pV T
7T (5)

fgﬂ*v 'V

fg
f:z Cu=

forall ¥ € H'(£2) and g € L2 5(£2).
To simplify this study, we use these notations

°c¢ <)
5

a<7,7>=/mw.w+/a77+/m<—177,
2 r 2
L(T) =/7 T+ 7T
2 r

and

b(7,q)=/ gV - .
2
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The system is written to find UeH '(£2)and p € L%(.Q) such that:

a(u, T)+b(V,p)=L(7V) ©
b(ii .q)=0

forall ¥ € H'(£2) and g € L3(£2).

3.2 The Existence and Uniqueness of the Solution

In this part, we will study the existence and uniqueness of the variational formulation
of our problem (6), for that, we recall important inequalities, which will be used in
this analysis. Firstly, we can see that the space (H'(£2), || v Il7.2) is a Hilbert space,
which is obliged condition in the existence and uniqueness of the solution, for that
we need the following results:

Theorem 1 There exists two positives constants ¢ and ¢, such that:
— — —
allvlie =1 vlre <clviie @)

forall v € HY(£2).
Proof Sce [4, 5].
Theorem 2 The space (H'(2), | - ||,.2) is a real Hilbert space.

Proof (H' (), - ll1.2) is a real Hilbert space, the norms || - |[;. and || - || ;. are
equivalent, then (H'(£2), | - |l,.2) is a real Hilbert space.

We can sec, now, the existence and uniqueness of the solution.

Theorem 3 The function b (-, -) is satisfies the velocity—pressure inf — sup condi-
tion, there exists a constant 3 > 0 such that:

b(V.q)
——— > Bliqllo.e (3
Teniy 1V 52

forall g € L(£2).

Proof The same proof of [7] suffices to see that HO1 (£2) Cc H'(2) and | ¥ e =
|V |1 in HY (£2).

Using “big” symmetric bilinear form C (%, p). (V. ¢)] and the corresponding
function F( 7, q). The bilinear forma (-, -) is positive continuous H'(£2) — elliptic
and the bilinear form b(-, -) is continuous satisfies the inf — sup condition. Now,
we present a stabilized finite element scheme for the Brinkman problem.
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Find %@ € H'(£2) and p € L}(£2) such that:
CL(W, p), (T, 1 = F(V . q) ©)

for all ¥ € H'(£2) and g € L2(£2). Then, the problem (6) is well-posed, and the
form bilinear C satisfies the following propositions.

Proposition 1 For all (W ,s) € H'(£2) x L2(2), we have

CI(u, p), (T, ]
sup

— > 8B .2 + lIsllo.e)- (10)
Fper <2 1V e+ lgllo.e

Proof See [10].

4 Mixed Finite Element Approximation

In this section, we use the finite element method to solve this problem see [11]. We
consider the family of triangulations 7},, of our domain §2 where & > 0. For any
triangle T € Tj, and for an element edge E, we define these notations

— wr is of triangle sharing at least one edge with element 7,

— @7 is the set of triangles sharing at least one vertex with 7,

dT 1is the set of the four edges of T, e(T) the set of its edges and Ny vertices.
wg denotes the union of triangles sharing E,

g is the set of triangles sharing at least one vertex whit E.

Welete, = (o, €(T) denotes the setof all edges splitinto interior and boundary
edges e, = &5, |J &n.r where

eno={Eecey: ECQ}ande,r ={Eec¢g,: EC I}

We denote by hr the diameter of a simplex, /4 the diameter of a face E of T
and h = maxrer, {hr}. We define FE spaces X}, C H'(£2) and M" C L}(£2). The
discrete version of (6) is, find  ;, € X} and pj, € M" such that:
a(id 1, Tn) + b, p) = L(V ),
- (11)
b( u hs Qh) == 07

forall ¥, € X} and g, € M.
Note that, all the results remain valid for these spaces X ,1, and M".
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5 A Posteriori Error Estimator

In this section, we use two types of a posteriori error indicator: the first, residual error
estimator and, the second, local Poisson problem estimator. These errors give global
error estimates where there are equivalent to the true error. For the a posteriori error
estimation for stabilized mixed approximations of the Stokes equations see [12].

5.1 A Residual Error Estimator

In this paper, we use MINI element method; they use a function called the “bubble
function,” which is related to any element of the space meshing. In Ceruse et al.
([13], Lemma 4.1), we established the Clement interpolation estimate.

Our aim is to estimate the velocity error WU —"Wn,eH 1(£2) and the pressure
error p — py € L(Z)(.Q). The element of contribution ng 7 is given by

— —
N =hp I Relor + IR7 G, + D hel R el g (12)
EeoT

—
the components of the residual error estimator R 7, Ry in (12) are given by
— — _
Re={f+wVud,—puK'%p—=Vplir (13)

and
Ry = (V- )l (14)

The residual error estimator R is given by

l *v _ o
R, — : sU*Vuy, — ppI |1 E € ey 0 (15)

T —[auy+WVT,—p DTV E €& p.

With the key contribution coming from the stress jump associated with an edge E
adjoining elements T and S:

MV — pud 1 = (WViug = ppDlr — (WVT = pp DI . (16)

The global residual error estimator is given by:

91—

ne=\Y nkr| - (17)

T €Ty
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Our aim is to bound || %7 — % |lx and || p — p s with respect to the norm || - || s
for the quotient velocity norm ||V |lx = || 7 ||l;.e and the pressure norm | pllx =
Ipllo.e- Forany T € T, and E € 9T, we define the following functions:

N — N —
Wy = Ryby, Wg = Rgbg

where this functions verified
owWr =0 ondT.
oif £ € 0T né‘h’g
— —

then W g = 0 ondwg, N
oif E € dT Neypthen E)E = 0 in the other three edges of triangle T'.
oW 7 and W g can be extended to whole of £2 by setting:

— —
Wr=0in2-T
Wp=0in2—wgif E€dT Neyq.
Wr=0mm2-TitEe€dT Neyr.

With these two functions, we have the following lemmas.

Lemma 1l Forany T € T, we have:
=z = i — 1= =
fwr=| WVi =pl) Vwr+ | puK™ 1 - wr. (18)
T T T

—
forall ,I_U)T IS X]i

Lemma 2 (i) if E € T N gy o, we have:

./u)E(?_MK_IE)).TU)E:/

w

(WVUT —pl)- VW . (19)
.
(ii) if E € 0T N gy, we have:

/ (?—/LK_l_u)>~mE=/(/L*V7—p1)~V7E+/ @w -7) T
T T T
(20)

Theorem 4 For any mixed finite element approximation defined on triangular grids
Ty, the residual estimator ng satisfies:

1% llse + lelloe < Cong Q1)

o=

ner < C ( > e, + ||e||3,,,}) . 22)

T’Ga)r

Note that, the constant C in the local lower bound is independent of the domain.
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5.2 A Local Poisson Problem Estimator

The local Poisson problem estimator:

np= |y upy (23)
TeTy

npr = leprlls s + leprlldr (24)

as follows

Theorem 5 The estimator np 1 is equivalent to the ng r estimator:

cnpr <nrr <Cnpr (25)

Theorem 6 For any mixed finite element approximation defined on triangular grids
Ty the estimator np satisfies:

lellz.2 + lello.e < Cnp (26)
and
%
ner < C [ {lelFs + leld s} 27)
TeTy

The constant C in the local lower bound is independent of the domain.

6 Numerical Simulation

In this section, we present numerical tests; based on the MFE method presented in
this article, we use the simulator Comsol Multiphysics. The results obtained confirm
that the errors are reasonable and the numerical computations of our problems have
demonstrated that this approach yields a physically realistic flow. In this simulations,
we take fluid density = 1000 kg/m?, permeability = 0.3 m?, Porosity = 0.4, and the
fluid viscosity values ranging from 0.1 Pa % s. We consider the boundary condition
C,. i+, Where 7 =(1,1),a = 10~* and @ = 10?. For discretization, we use uniform
rectangular discretization of our reservoir. Figure 1 presents the velocity fora = 107
and a = 10%.
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(a) The velocity with a = 1074

Fig.1 Velocity of Brinkman equation
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(a) The pressure contours with a =

1074

Fig. 2 Pressure contours of Brinkman equation

Table 1 Errors, the linear error, residual error, and the error of the velocity
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(b) The velocity with a = 10?
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(b) The pressure contours with a = 103

h Number of grids | erru LinErr LinRes
0.10 30 x 20 0.25 1.6e~12 8.0e~ 15
0.15 20 x 15 0.36 1.8¢712 1.0e~14
0.20 15 x 10 0.47 2.4e~12 1.9¢~14
0.30 10 x 07 0.68 3.8e~12 2.7e~14
0.40 08 x 05 0.82 5.5¢712 5.0e7 1

In Fig.2, we show the pressure contours of Brinkman equation with different
parameter in the boundary equation. Now, we present different errors for our problem.
In Table 1, LinErr is the linear error, LinRes is the residual error, and erru is the error
of the velocity equation. From Table I, we can sec the efficiency of this method,

when the mesh is small enough the error approaches zero.
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